Multiple specialised goose-type lysozymes potentially compensate for an exceptional lack of chicken-type lysozymes in Atlantic cod

نویسندگان

  • Marit Seppola
  • Kathrine Ryvold Bakkemo
  • Helene Mikkelsen
  • Bjørnar Myrnes
  • Ronny Helland
  • David M. Irwin
  • Inge W. Nilsen
چکیده

Previous analyses of the Atlantic cod genome showed unique combinations of lacking and expanded number of genes for the immune system. The present study examined lysozyme activity, lysozyme gene distribution and expression in cod. Enzymatic assays employing specific bacterial lysozyme inhibitors provided evidence for presence of g-type, but unexpectedly not for c-type lysozyme activity. Database homology searches failed to identify any c-type lysozyme gene in the cod genome or in expressed sequence tags from cod. In contrast, we identified four g-type lysozyme genes (LygF1a-d) constitutively expressed, although differentially, in all cod organs examined. The active site glutamate residue is replaced by alanine in LygF1a, thus making it enzymatic inactive, while LygF1d was found in two active site variants carrying alanine or glutamate, respectively. In vitro and in vivo infection by the intracellular bacterium Francisella noatunensis gave a significantly reduced LygF1a and b expression but increased expression of the LygF1c and d genes as did also the interferon gamma (IFNγ) cytokine. These results demonstrate a lack of c-type lysozyme that is unprecedented among vertebrates. Our results further indicate that serial gene duplications have produced multiple differentially regulated cod g-type lysozymes with specialised functions potentially compensating for the lack of c-type lysozymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new lysozyme fold. Crystal structure of the muramidase from Streptomyces coelicolor at 1.65 A resolution.

Cellosyl is a bacterial muramidase from Streptomyces coelicolor. Similar to other lysozymes, the enzyme cleaves the beta-1,4-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine units, but it also exhibits a beta-1,4-N,6-O-diacetylmuramidase activity. The latter enables Cellosyl to degrade the cell walls of Staphylococcus aureus, which are not hydrolyzed by chicken-, goose-, or ...

متن کامل

Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein.

Lysozyme is a widely distributed hydrolase possessing lytic activity against bacterial peptidoglycan, which enables it to protect the host against pathogenic infection. In the present study, the cDNA of an invertebrate goose-type lysozyme (designated CFLysG) was cloned from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. Th...

متن کامل

Analysis of Two Lysozyme Genes and Antimicrobial Functions of Their Recombinant Proteins in Asian Seabass

Lysozymes are important proteins of the innate immune system for the defense against bacterial infection. We cloned and analyzed chicken-type (c-type) and goose-type (g-type) lysozymes from Asian seabass (Lates calcarifer). The deduced amino acid sequence of the c-type lysozyme contained 144 residues and possessed typical structure residues, conserved catalytic residues (Glu(50) and Asp(67)) an...

متن کامل

Adaptive functional diversification of lysozyme in insectivorous bats.

The role of gene duplication in generating new genes and novel functions is well recognized and is exemplified by the digestion-related protein lysozyme. In ruminants, duplicated chicken-type lysozymes facilitate the degradation of symbiotic bacteria in the foregut. Chicken-type lysozyme has also been reported to show chitinase-like activity, yet no study has examined the molecular evolution of...

متن کامل

Bi-functional activities of chimeric lysozymes constructed by domain swapping between bacteriophage T7 and K11 lysozymes.

The lysozymes encoded by bacteriophage T7 and K11 are both bifunctional enzymes sharing an extensive sequence homology (75%). The constructions of chimeric lysozymes were carried out by swapping the N-terminal and C-terminal domains between phage T7 and K11 lysozymes. This technique generated two chimeras, T7K11-lysozyme (N-terminal T7 domain and C-terminal K11 domain) and K11T7-lysozyme (N-ter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016